Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Arithmetic Progressions : Exercise 5.4 (Optional) (Mathematics NCERT Class 10th)


                CLICK HERE to watch the second part

 

Q.1     Which term of the AP : 121, 117, 113....., is its first negative terms?
Sol.       121, 117, 113, ....
              a = 121, d = 117 – 121 = – 4
              {a_n} = a + \left( {n - 1} \right)d
              = 121 + (n – 1) × – 4
              = 121 – 4n + 4 = 125 – 4n
              For the first negative term
              {a_n} < \,0\,\,\,\, \Rightarrow \,\,\,\,125\,\, - 4n < 0
               \Rightarrow 125 < 4n
               \Rightarrow {{125} \over 4} < n
               \Rightarrow 31{1 \over 4} < n
              n is an integer and 31{1 \over 4}" />
               \Rightarrow The first negative term is 32nd term.

Q.2     The sum of the third and the seventh terms of an AP is 6 and their product is 8. Find the sum of first sixteen terms of the AP.
Sol.         Let the AP be a – 4 d, a – 3 d, a – 2 d, a – d, a, a + d, a + 2 d, a + 3 d, ....
               Then,  {a_3} = a - 2d,\,{a_7} = a - 2d
                \Rightarrow {a_3} + \,{a_7} = a - 2d + a - 2d = 6
                \Rightarrow 2a = 6
                \Rightarrow a = 3 ... (1)

               Also (a – 2d) (a + 2d) = 8
                \Rightarrow {a^2} - 4{d^2} = 8
                \Rightarrow 4{d^2} = {a^2} - 8
                \Rightarrow 4{d^2} = {\left( 3 \right)^2} - 8 = 9 - 8 = 1
                \Rightarrow {d^2} = {1 \over 4}
                \Rightarrow {d^2} = \pm {1 \over 2}
               Taking d = {1 \over 2}
               {S_{16}} = {{16} \over 2}\left[ {2 \times \left( {a - 4d} \right) + \left( {16 - 1} \right) \times d} \right]
                = 8\left[ {2 \times \left( {3 - 4 \times {1 \over 2}} \right) + 15 \times {1 \over 2}} \right]
                = 8\left[ {2 + {{15} \over 2}} \right] = 8 \times {{19} \over 2} = 76
               Taking d = - {1 \over 2}
               {S_{16}} = {{16} \over 2}\left[ {2 \times \left( {a - 4d} \right) + \left( {16 - 1} \right) \times d} \right]
                = 8\left[ {2 \times \left( {3 - 4 \times {1 \over 2}} \right) + 15 \times - {1 \over 2}} \right]
                = 8\left[ {2 \times 5 - {{15} \over 2}} \right]
                = 8\left[ {{{20 - 15} \over 2}} \right]
                = 8 \times {5 \over 2} = 20
               Therefore, {S_{16}} = 20,76

Q.3      A ladder has rungs 25 cm apart (see figure). The rungs decrease uniformly in length from 45 cm, at the bottom to 25 cm at the top. If the top and the bottom rungs are 2{1 \over 2} m apart, what is the length of the wood required for the rungs?

1
Sol.       Number of rungs, n = {{2{1 \over 2}m} \over {25\,cm}}
              = {{250\,cm} \over {25\,cm}} = 10
             So, there are 10 rungs
             The length of the wood required for rungs = Sum of 10 rungs
              = {{10} \over 2}\left[ {25 + 45} \right]
              = 5 \times 70 = 350\,cm

Q.4     The houses of a row are numbered consecutively from 1 to 49. Show that there is a value of x such that the sum of the numbers of the houses preceding the house numbered x is equal to the sum of the numbers of the houses following it. Find this value of x.
Sol.        Here a = 1, and d = 1
              Therefore, {S_{n - 1}} = {{x - 1} \over 2}\left[ {2 \times 1 + \left( {x - 1 - 1} \right) \times 1} \right]e
               = {{x - 1} \over 2}\left( {2 + x - 2} \right) = {{\left( {x - 1} \right)\left( x \right)} \over 2}
               = {{{x^2} - x} \over 2}
              {S_n} = {x \over 2}\left[ {2 \times 1 + \left( {x - 1} \right) \times 1} \right] = {x \over 2}\left( {x + 1} \right)
              {{{x^2} + x} \over 2}
              and, {S_{49}} = {{49} \over 2}\left[ {2 \times 1 + \left( {49 - 1} \right) \times 1} \right]
               = {{49} \over 2}\left[ {2 + 48} \right] = {{49} \over 2} \times 50
               = 49 \times 25
              According to the question,
              {S_{n - 1}} = {S_{49}} - {S_x}
              i.e., {{{x^2} - x} \over 2} = 49 \times 25 - {{{x^2} + x} \over 2}
               \Rightarrow {{{x^2} - x} \over 2} + {{{x^2} + x} \over 2} = 49 \times 25
               \Rightarrow {{{x^2} - x + {x^2} + x} \over 2} = 49 \times 25
               \Rightarrow {x^2} = 49 \times 25
               \Rightarrow x = \pm \,\,7 \times 5
              Since x is a counting number , so taking positive square root, x = 7 × 5 = 35.

Q.5     A small terrace at a football ground comprises of 15 steps each of which is 50 m long and built of solid concrete.
small
Each step has a rise of {1 \over 4}m and a tread of {1 \over 2}m (see figure). Calculate the total volume of concrete required to build the terrace.

Sol.        Volume of concrete required to build the first step, second step, third step.... \left( {in\,{m^3}} \right) are
              {1 \over 4} \times {1 \over 2} \times 50,\left( {2 \times {1 \over 4}} \right) \times {1 \over 2} \times 50,\left( {3 \times {1 \over 4}} \right) \times {1 \over 2} \times 50,.... 
              i.e. {{50} \over 8},2 \times {{50} \over 8},3 \times {{50} \over 8},....
              Therefore Total volume of concrete required.
               = {{50} \over 8} + 2 \times {{50} \over 8} + 3 \times {{50} \over 3} + ...
               = {{50} \over 8}\left[ {1 + 2 + 3 + ...} \right]
              = {{50} \over 8} \times {{15} \over 2}\left[ {2 \times 1 + \left[ {15 - 1)} \right] \times 1} \right] [Since, n = 15]
               = {{50} \over 8} \times {{15} \over 2} \times 16 = 750\,{m^3}



43 Comments

Leave a Reply

Contact Us

Call us: 8287971571,0261-4890014

Or, Fill out the form & get a call back.!