Q.1 Find the sum of the following APs :
(i) 2, 7, 12, .... to 10 terms.
(ii) – 37, –33, – 29, .... to 12 terms.
(iii) 0.6, 1.7, 2.8...., to 100 terms.
(iv) to 11 terms.
Sol. (i) Let a be the first term and d be the common difference of the given AP then, we have
a = 2 and d = 7 – 2 = 5
We have to find the sum of 10 terms of the given AP.
Putting a = 2, d = 5, n = 10 in
we get
= 5(4 + 45) = 5 × 49 = 245
(ii) Let a be the first term and d be the common difference of the given AP. Then we have
a = – 37, d = – 33 – (– 37) = – 33 + 37 = 4
We have to find the sum of 12 terms of the given AP.
Putting a = – 37, d = 4, n = 12 in
= 6 (– 74 + 11 × 4)
= 6 (– 74 + 44) = 6 × (– 30) = – 180
(iii) Let a be the first term and d be the common difference of the given AP. Then, we have
a = 0.6, d = 1.7 – 0.6 = 1.1
We have to find the sum of 100 terms of the given AP
Putting a = 0.6 d = 1.1, n = 100 in
= 50(1.2 + 99 × 1.1)
= 50 (1.2 + 108.9)
= 50 × 110.1 = 5505
(iv) Let a be the first term and d be the common difference of the given AP. Then we have
We have to find the sum of 11 terms of the given AP.
Putting
Q.2 Find the sums given below :
(i)
(ii) 34 + 32 + 30 + ...... + 10
(iii) – 5 + (– 8) + (– 11) + .... + (– 230)
Sol. (i) Here, the last term is given. We will first have to find the number of terms.
Therefore, 84 = a + (n – 1) d
n – 1 = 22
n = 23
We know that
(ii) Here, the last term is given. We will first have to find the number of terms.
a = 34, d = 32 – 34 = – 2, l =
Therefore 10 = a + (n – 1)d
10 = 34 + (n – 1) (– 2)
(– 2) (n – 1) = 10 – 34
(– 2) (n –1) = – 24
n – 1 = 12
n = 12 + 1 = 13
Using , we have
= 13 × 22 = 286
(iii) Here the last term is given. We will first have to find the number of terms.
a = – 5, d = – 8 – (–5) = – 8 + 5 = – 3, l =
Therefore – 230 = a + (n – 1) d
– 230 = – 5 + (n – 1) (– 3)
(– 3) (n – 1) = – 230 + 5
(– 3) (n – 1) = – 225
n – 1 = 75
n = 75 + 1 = 76
Using , we have
= 38 × – 235 = – 8930
Q.3 In an AP :
(i) Given a = 5, d = 3, .
(ii) Given a = 7,
(iii)Given
(iv)Given
(v) Given
(vi) Given a = 2, d = 8 ,
(vii) Given a = 8, , find n and d.
(viii) Given , find n and a.
(ix) Given a = 3, n = 8, S = 192, find d.
(x) Given l = 28, S = 144, and there are total 9 terms. Find a.
Sol. (i) We have a = 5, d = 3 and
a + (n – 1)d = 50
5 + (n – 1) 3 = 50
3(n – 1) = 50 – 5
n = 15 + 1 = 16
Putting n = 16, a = 5 and
We get
Hence, n = 16 and
(ii) We have a = 7 and
Let d be the common difference of the given AP. Then,
a + 12 d = 35
7 + 12 d = 35 [Since a = 7]
12d = 35 – 7 = 28
Putting n = 13, a = 7 and
= 13 × 21 = 273
Hence,
(iii) We have
Let a be the first term of the given AP. Then,
a + 11d = 37
a + 11(3) = 37
a + 11(3) = 37 [Since d = 3]
a = 37 – 33 = 4
Putting n = 12, a = 4 and
Hence, , a = 4 and
(iv) We have,
Let a be the first term and d the common difference of the given AP. Then,
a + 2d = 15 ... (1)
and [2a + (10 – 1)d] = 125
5(2a + 9d) = 125
2a + 9d = 25 ... (2)
2 × (1) – (2) gives,
2(a + 2d) – (2a + 9d) = 2 × 15 – 25
4d – 9d = 30 – 25
– 5d = 5
Now,
= 15 + 7 (– 1) [Using (1)]
= 15 – 7 = 8
Hence, d = – 1 and
(v) We have d = 5 ,
Let a be the first term of the given AP. Then,
9a + 180 = 75
9a = 75 – 180
9a = – 105
Now
Hence,
(vi) We have, a = 2, d = 8 ,
Therefore,
But n cannot be negative
Therefore, n = 5
Now
Hence, n = 5 and
(vii) We have , a = 8,
Let d be the common difference of the given AP.
Now,
[Since ]
and
a + 5d = 62
8 + 5d = 62 [since a = 8]
5d = 62 – 8 = 54
Hence, and n = 6
(viii) We have
Let a be the first term of the given AP. Then.
a + (n – 1)2 = 4 [since d = 2]
a = 4 – 2 (n – 1) ... (1)
and
[since ]
n (a + 4) = – 28
n[4 – 2 (n – 1) + 4] = – 28
n (4 – 2n + 2 + 4) = – 28
n(– 2n + 10) = – 28
n (– n + 5) = – 14
(n – 7) (n + 2) = 0
n = 7 or – 2
But n cannot be negative
n = 7
Putting n = 7 in (1), we get
a = 4 – 2 (7 – 1) = 4 – 2 × 6
= 4 – 12 = – 8
Hence, n = 7 and a = – 8
(ix) We have, a = 3, n = 8, S = 192
Let d be the common difference of the given AP.
192 = 4(6 + 7d)
48 = 6 + 7d
7d = 48 – 6
7d = 42
Hence, d = 6
(x) We have l = 28, S = 144, n = 9
Let a be the first term of the given AP.
S = 144
a + 28 = 32
a = 32 – 28 = 4
Hence, a = 4
Q.4 How many terms of the AP : 9 , 17, 25, ... must be taken to give a sum of 636 ?
Sol. Let the first term be a = 9 and common difference d = 17 – 9 = 8. Let the sum of n terms be 636. Then,
n(4n + 5) = 636
Therefore,
But n cannot be negative
Therefore, n = 12
Thus, the sum of 12 terms is 636.
Q.5 The first term of an AP is 5, the last term is 45 and the sum is 400. Find the number of terms and the common difference.
Sol. Let a be the first term and d the common difference of the AP such that.
a = 5, l = 45 and S = 400
Therefore, S = 400
n(50) = 400 × 2
and l = 45 a + (n – 1) d = 45
5 + (16 – 1)d = 45
15d = 45 – 5 = 40
Hence, the number of term is 16 and the common difference is .
Register here for Live Tutoring Crash Course to Score A+ in Board & Final Exams.
Q.6 The first and the last terms of an AP are 17 and 350 respectively. If the common difference is 9, how many terms are there and what is their sum?
Sol. Let a be the first term and d be the common difference. Let l be its last term. Then a = 17, , d = 9 .
a + (n – 1) d = 350
17 + (n – 1)9 = 350
9(n – 1) = 350 – 17 = 333
n = 37 +1 = 38
Putting a = 17, l = 350, n = 38
in
= 19 × 367 = 6973
Hence, there are 38 terms in the AP having their sum as 6973.
Q.7 Find the sum of first 22 terms of an AP in which d = 7 and 22nd term is 149.
Sol. Let a be the first term and d the common difference of the given AP then,
d = 7 and
a + (22 – 1) d = 149
a + 21 × 7 = 149
a = 149 – 147 = 2
Putting n = 22, a = 2 and d = 7 in
, we get
= 11(4 + 21 × 7)
= 11(4 + 147)
= 11 × 151 = 1661
Hence, the sum of first 22 terms is 1661.
Q.8 Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively.
Sol. Let a be the first term and d the common difference of the given AP. Then,
a + d = 14 and a + 2d = 18
Solving these equations , we get
d = 4 and a = 10
Putting a = 10, d = 4 and n = 51 in
, we get
= 51 × 110 = 5610
Q.9 If the sum of 7 terms of an AP is 49 and that of 17 terms is 289, find the sum of n terms.
Sol. Let a be the first term and d the common difference of the given AP. Then.
a + 3d = 7 ... (1)
and
a + 8d = 17 ... (2)
Solving these two equations, we get
5d = 10 , d = 2 and a = 1
Therefore,
Q.10 Show that form an AP where is defined as below :
(i) (ii)
Also find the sum of the first 15 term in each case.
Sol. (i) We have,
Substituting n = 1, 2, 3, 4, ... , n , we get
The sequence 7, 11, 15, 19, .... (3 + 4n) which is an AP with common difference 4.
Putting a = 7, d = 4 and n = 15 in
, we get
(ii) We have,
Substituting n = 1, 2, 3, 4, .... n, we get
The sequence 4, – 1, – 6, – 11, .... (9 – 5n), which is an AP with common difference – 5.
Putting a = 4, d = – 5 and n = 15 in
we get
= 15 × – 31 = – 465
Register here and Watch Previous Year CBSE Papers Video Solutions for FREE.
Q.11 If the sum of the first n terms of an AP is 4n , what is the first term (that is )? What is the sum of first two terms ? What is the second term? Similarly, find the 3rd the 10th and the nth terms.
Sol. According to the question,
= 4 – 1 = 3
First term = 3
Now, sum of first two terms =
Therefore Second term
= 12 – 9 = 3
Therefore Third term = = 3 – 4 = – 1
= 36 – 81 = – 45
and,
= 40 – 100 = – 60
Therefore Tenth term =
= – 60 – (– 45)
= – 60 + 45 = – 15
Also,
and
Therefore, nth term =
Q.12 Find the sum of the first 40 positive integers divisible by 6.
Sol. The first positive integers divisible by 6 are 6, 12, 18, .... Clearly, it is an AP with first term a = 6 and common difference d = 6.
We want to find
Therefore,
= 20 (12 + 39 × 6)
= 20(12 + 234) = 20 × 246 = 4920
Q.13 Find the sum of the first 15 multiples of 8.
Sol. The first 15 multiples of 8 are 8 × 1, 8 × 2, 8 × 3, ... 8 × 15 i.e., 8, 16, 24 .... 120, which is an AP.
Therefore Sum of 1st 15 multiples of
= 15 × 64 = 960
Q.14 Find the sum of the odd numbers between 0 and 50.
Sol. The odd numbers between 0 and 50 are 1, 3, 5, 49. They form an AP and there are 25 terms.
Therefore, Their sum
= 25 × 25 = 625
Q.15 A contract on construction job specifies a penalty for delay of completion beyond a certain date as follows: Rs 200 for the first day, Rs 250 for the second day, Rs 300 for the third day, etc., the penalty for each succeeding day being Rs 50 more than for the preceding day. how much money the contractor has to pay as penalty, if he has delayed the work by 30 days?
Sol. Here a = 200 , d = 50 and n = 30
Therefore,
= 15(400 + 29 × 50)
= 15(400 + 1450)
= 15 × 1850
= 27750
Hence, a delay of 30 days costs the contractor Rs 27750.
Want to Know, How to Study Effectively? Click here for Best Tips.
Q.16 A sum of Rs 700 is to be used to give seven each prizes to students of a school for their overall academic performance. If each prize is Rs 20 less than its preceding prize, find the value of each of the prizes.
Sol. Let the respective prizes be a + 60, a + 40, a + 20, a, a – 20, a – 40, a – 60
Therefore, The sum of the prizes is
a + 60 + a + 40 + a + 20 + a + a – 20 + a – 40 + a – 60 = 700
7a = 700
Therefore, The seven prizes are 100 + 60, 100 + 40, 100 + 20, 100, 100 – 20, 100 – 40, 100 – 60
or 160, 140, 120, 100, 80, 60, 40 (in Rs)
Q.17 In a school, students thought of planting trees in an around the school to reduce air pollution. It was decided that the number of trees, that each section of each class will plant, will be the same as the class, in which they are studying e.g., a section of Class I will plant 1 tree, a section of Class II will plant 2 trees and so on till Class XII. There are three sections of each class. How many trees will be planted by the students?
Sol. Since there are three sections of each class, so the number of trees planted by class I, class II, class III,... class XII are 1 × 3, 2 × 3, 3 × 3, .... 12 × 3 respectively.
i.e., 3, 6, 9, ... 36. Clearly, it form an AP.
The sum of the number of the trees planted by these classes.
Q.18 A spiral is made up of successive semicircles , with centres alternately at A and B, starting with cenre at A, of radii 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, .... as shown in fig.
What is the total length of such a spiral made up of thirteen consecutive semicircles ?
Sol. Length of a semi-circum ference = where r is the radius of the circle.
Therefore, Length of spiral made up of thirteen consecutive semicircles.
Q.19 200 logs are stacked in the following manner. 20 logs in the bottom row, 19 in the next row, 18 in the row next to it and so on (see figure). In how many rows are the 200 logs placed and how many logs are in the top row?
Sol. Clearly logs stacked in each row form a sequence 20 + 19 + 18 + 17 + .... It is an AP with a = 20, d = 19 – 20 = – 1.
Let . Then
n(40 – n + 1) = 400
n = 16 or 25
Here the common difference is negative.
The terms go on diminishing and 21st term becomes zero. All terms after 21st term are negative. These
negative terms when added to positive terms from 17th term to 20th term, cancel out each other and the sum remains the same.
Thus n = 25 is not valid for this problem. So we take n = 16.
Thus, 200 logs are placed in 16 rows.
Number of logs in the 16th row
= a + 15d
= 20 + 15(–1)
= 20 – 15 = 5
Q.20 In a potato race, a bucket is placed at the starting point, which is 5 cm from the first potato, and the other potatoes are placed 3 m apart in a straight line. There are ten potatoes in the line (see figure).
A competitor starts from the bucket, picks up the earest potato, runs back with it, drops it in the bucket, runs back to pick up the next potato, runs to the bucket to drop it in, and she continues in the same way until all the potatoes are in the bucket. What is the total distance the competitor has to run?
Sol. To pick up the first potato second potato, third potato, fourth potato, ....
The distance (in metres) run by the competitor are
2 × 5 ; 2 × (5 + 3), 2 × (5 + 3 + 3), 2 × (5 + 3 + 3 + 3), ....
i.e., 10, 16, 22, 28, ....
which is in AP with a = 10, d = 16 – 10 = 6
Therefore, The sum of first ten terms,
= 5(20 + 54) = 5 × 74 = 370
Therefore, The total distance the competitor has to run is 370 m.
Click here To Watch Class 10 Maths Animated Videos.
FREE CBSE Video Solutions & Chapter Video Lectures | Watch NOW |
thank u
A very use full app
Message * very nice. Tnk u
Thanks so much
Thanks so much
A very helpful app
Solved my problem
#its very helpful for every students!!!..this site helps to score good marks and the doubted questions can be cleared in ur house itself!#
TYSM 🙂
It is very helpful
Thank you very much
Thanks for my help
Thanku for this app
Very Nice
Thank you so much .This app is real perfect for evry student
Good answers
Thanks very much you are gud
Thanks very much
Good app keep on working you will get more visitors to ur site
Apke vidio soluition bahut dhangse samajha hu or santushth bhi h
thank u its very helpful
thank u
So usefull
Thanks
Thanks you so much
thanks for your
help✌
This is good
A very good elaboration of each step. I really appreciate it.
Brilliant
Thanks a lot .
THANKS
Thanks for the answers
thank you so much
Its very easy....thank you so much
Its very easy....thank you so much
EXCELLENT
thank u it is very helpful
I am so happy to this solutions
I am so happy to this solutions
amazing
Thank you for the help and better understanding of the concept
Thank sir it's very helpful for me thanku
So nice app I am so happy
very nice app
Message *awesome ylll
Message *l like this this was very helpful for me and my friend sm
Hmm good
It's amazing .....Helped a lot to prepare for exam
Very nice
It is very useful thanks
Thank u
It is very useful for me.
It is my favorite site
Thank you so much
Thank you
Osmmmmm
I like this app so much
Thank you
very good app
Good I like it
Very good app
Very much helpful to me
Very much helpful
And
A kind for me
Helped in solving mah sums
Marvelous
Helped a lot to studies
Very helpful for exam
Nice
So nice its very important to me .... its so helpfull to do the problems which we do no ... so thanku for publishing this type of app and network......
Thanks very cleard answerd
Wow !!!!helped me a lot
thanks
Very very nice app for leaning
I love this. Thanks for helping me dronstudy. com
Nice
I'm really like this.......
Plz add optional exercises
Asmn it's really good and amazing
Asmn it's really good news amazing
Asmn it's really good news amazing
Thanks so much
It's very reliable and helpful for all class 10 students. Thank u for providing us with such a good solved study material.
Thank you so much
⭐⭐
⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐⭐⭐
⭐⭐
⭐
⭐
⭐
⭐
⭐⭐
⭐⭐⭐⭐⭐
⭐⭐
⭐
⭐
⭐
⭐
⭐⭐
⭐⭐
⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐⭐⭐
⭐⭐
⭐
⭐
⭐
⭐
⭐⭐
⭐⭐⭐⭐⭐
⭐⭐
⭐
⭐
⭐
⭐
⭐⭐
⭐⭐
⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐⭐⭐
⭐⭐
⭐
⭐
⭐
⭐
⭐⭐
⭐⭐⭐⭐⭐
⭐⭐
⭐
⭐
⭐
⭐
⭐⭐
⭐⭐
⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐⭐⭐
⭐⭐
⭐
⭐
⭐
⭐
⭐⭐
⭐⭐⭐⭐⭐
⭐⭐
⭐
⭐
⭐
⭐
⭐⭐
⭐⭐
⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐
⭐⭐⭐⭐⭐
⭐⭐
⭐
⭐
⭐
⭐
⭐⭐
⭐⭐⭐⭐⭐
⭐⭐
⭐
⭐
⭐
⭐
⭐⭐
Thank you it is very helpful
Very nice and interesting I having fun of it
Thanks
This helped me A lot in my academics
It is good and useful to answer or write in board and getting appreciation by mam.....
Thanku it really help in my exams ✌
Very helpful this app
Very very thnx
Thank u very helpful this app
Helpful
Very usefull
Best
Superb app
thanx
Very nice I like it☺
Thank you this app help to me solve this question
Tnx the I am very hppy 4 helping me
Nice
THNKS
Actually i dont like maths but this dronstudy makes me like maths.................
Nyc
awesomeeeeeee
Help me a lot and I got interested in doing maths sums
Help me a lot and I got interested in doing maths sums
Thanks for helping I love it
nyce (thanks for this)
I am so happy that app doing heLP me
Good aap
Thank u☺
thanku ☺☺
Loved this site
thank u☺☺☺☺☺☺☺☺
thank u, its very helpful for us
I loved this site.
It helped me a lot to solve my doubts.
thank you so much
THANKS A LOT
This is really good aap more help to solve math questions
It's app not AAP
That's really good aap
Thanks for ur answer.....helped me a lot
this is really amazing
This is really amazing
THIS IS REALY AMAZING
nice
thanks
thank u 🙂
thank you
bahut mast
Its really gud ....
Nice
very very nice
Message *thanku soo much
This os help us to understand maths salutation .thanks
Nice