Unless stated otherwise, use
Q.2 Â Â The radii of two circles are 8 cm and 6 cm respectively. Find the radius of the circle having area equal to the sum of the area of the two circles.Â
Sol.Â Â Â Â Let r be the radius of the circle whose area is equal to the sum of the area of the circles of radii 8 cm and 6 cm.
Â Â Â Â Â Â Â Therefore,
Â Â Â Â Â Â Â
Â Â Â Â Â Â Â
Â Â Â Â Â Â Â
Â Â Â Â Â Â Â
Â Â Â Â Â Â Â Hence, the radius of the new circle is 10 cm.
Q.3 Â Â Â Figure depicts an archery target marked with its five scoring areas from the centre outwards as Gold, Red, Blue , Black and White. The diameter of the region representing Gold score is 21 cm and reach of the other bands is 10.5 cm wide.
Find the area of each of the five scoring regions.
Sol. Â Â Â The area of each of five scoring regions are as under :
Â Â Â Â Â Â Â For Gold :
Â Â Â Â Â Â Â
Â Â Â Â Â Â Â For Red :
Â Â Â Â Â Â Â
Â Â Â Â Â Â Â
Â Â Â Â Â Â Â For Blue :
Â Â Â Â Â Â Â Â
Â Â Â Â Â Â Â
Â Â Â Â Â Â Â For Black :
Â Â Â Â Â Â Â
Â Â Â Â Â Â Â
Â Â Â Â Â Â Â For White :
Â Â Â Â Â Â Â
Â Â Â Â Â Â Â
Q.5 Â Â Â Tick the correct answer in the following and justify your choice : If the perimeter and the area of a circle areÂ numericallyÂ equal, then the radius of the circle isÂ
Â Â Â Â Â Â Â (a) 2 units Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (b)
Â Â Â Â Â Â Â (c) 4 units Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (d) 7 units
Sol.Â Â Â Â Â Â (a) Because ,
Â Â Â Â Â Â Â Â Â Here, , where r is the radius
Â Â Â Â Â Â Â Â Â
Â Â Â Â Â Â Â Â Â r(r â€“ 2) = 0
Â Â Â Â Â Â Â Â Â r = 0 or r = 2
Â Â Â Â Â Â Â Â Â But, Therefore, r = 2 units
FREE CBSE Video Solutions & Chapter Video Lectures | Watch NOW!! |
Great
Awesome solutions of every question s in dronstudy
It's really useful if u upload easy tricks for calculation it will be so
easy
Message *thanks for great help
Message *thanks for notes
jhakasss
Thank you for nots
It is very useful for all the students
THANK YOU
Thanks for the notesâ˜º
Message *it's gd
Message * it's gd
It is very useful
U r really amazing
Nice work to all students
Thanks again for the help
Good !!!!
Thanks a lot
its very good
Math help 9th 10th class
Its too Good... Tq for this
Its too Good.. Tq...
Thankyou very much
awsome......i liked your solutions
Best solution
Thank-you so much
Thanks a lot!!!
l liked your solutions...
Your solutions are very helpful. I like your solutions.
Your solutions are very efficient
And help us at an extinct
Thkns for your contribution....
jee main for class 10 th